Shrinking guts in catfish
Posted: 05 Mar 2010, 05:45
German, DP, DT Neuberger, MN Callahan, NR Lizardo & DH Evans, 2010. Feast to famine: The effects of food quality and quantity on the gut structure and function of a detritivorous catfish (Teleostei: Loricariidae). Comparative Biochemistry and Physiology A - Molecular & Integrative Physiology 155: 281–293.
Abstract
The gastrointestinal (GI) tract and associated organs are some of the most metabolically active tissues in an animal. Hence, when facing food shortages or poor food quality, an animal may reduce the size and function of their GI tract to conserve energy. We investigated the effects of prolonged starvation and varying food quality on the structure and function of the GI tract in a detritivorous catfish, Pterygoplichthys disjunctivus, native to the Amazonian basin, which experiences seasonal variation in food availability. After 150 days of starvation or consumption of a wood-diet too low in quality to meet their energetic needs, the fish reduced the surface area of their intestines by 70 and 78%, respectively, and reduced the microvilli surface area by 52 and 27%, respectively, in comparison to wild-caught fish consuming their natural diet and those raised in the laboratory on a high-quality algal diet. Intake and dietary quality did not affect the patterns of digestive enzyme activity along the guts of the fish, and the fish on the low-quality diet had similar mass-specific digestive enzyme activities to wild-caught fish, but lower summed activity when considering the mass of the gut. Overall, P. disjunctivus can endure prolonged starvation and low food quality by down-regulating the size of its GI tract.
Abstract
The gastrointestinal (GI) tract and associated organs are some of the most metabolically active tissues in an animal. Hence, when facing food shortages or poor food quality, an animal may reduce the size and function of their GI tract to conserve energy. We investigated the effects of prolonged starvation and varying food quality on the structure and function of the GI tract in a detritivorous catfish, Pterygoplichthys disjunctivus, native to the Amazonian basin, which experiences seasonal variation in food availability. After 150 days of starvation or consumption of a wood-diet too low in quality to meet their energetic needs, the fish reduced the surface area of their intestines by 70 and 78%, respectively, and reduced the microvilli surface area by 52 and 27%, respectively, in comparison to wild-caught fish consuming their natural diet and those raised in the laboratory on a high-quality algal diet. Intake and dietary quality did not affect the patterns of digestive enzyme activity along the guts of the fish, and the fish on the low-quality diet had similar mass-specific digestive enzyme activities to wild-caught fish, but lower summed activity when considering the mass of the gut. Overall, P. disjunctivus can endure prolonged starvation and low food quality by down-regulating the size of its GI tract.